Chemistry II

014

01 Nov. 2013 08.30am - 11.30am

REPUBLIC OF RWANDA

RWANDA EDUCATION BOARD

ADVANCED LEVEL NATIONAL EXAMINATIONS 2013

SUBJECT: CHEMISTRY

PAPER II: THEORY

COMBINATIONS: - BIOLOGY-CHEMISTRY-GEOGRAPHY (BCG)

- MATHEMATICS-CHEMISTRY-BIOLOGY (MCB)

- PHYSICS-CHEMISTRY-BIOLOGY (PCB)

- PHYSICS-CHEMISTRY-MATHEMATICS (PCM)

DURATION: 3 HOURS

INSTRUCTIONS:

- 1) Don't open this question paper until you are told so.
- 2) This paper consists of two sections: A and B.

• Section A: Attempt all questions.

(70 marks)

• Section B: Attempt any three questions.

(30 marks)

- 3) You do not need the Periodic Table.
- 4) Silent non-programmable calculators may be used.

(70 marks)

	(:- ====),	
1.	Explain the following observations: a) Atomic radius of fluorine is smaller than that of Lithium.	
	(Atomic number: F=9, Li=3)	(2 marks)
	b) Solubility of sulphates of group II (a) elements (MgSO ₄ , CaSO ₄ , SrSO ₄ , BaSO ₄) decreases as you move down the group.	(2 marks)
J	c) Lead chloride (IV), PbCl ₄ , is a covalent compound whereas lead chloride (II), PbCl ₂ , is ionic.	(2 marks)
2.	a) Atomic number of magnesium is 12, atomic number of chlorine is 17: i. Write the electronic configuration of magnesium and that of chlorine	(2 marks)
	(in terms of s, p, d). ii. Write a balanced chemical equation of the reaction between	
	magnesium and chlorine.	(1 mark)
	b) In terms of advantages and disadvantages; give four (4) differences between soap and detergents.	(2 marks)
3.	Write a balanced chemical equation for the reaction between: a) Cold dilute nitric acid (HNO ₃) and Iron metal (Fe). b) Copper metal (Cu) and concentrated nitric acid (HNO ₃).	(2 marks) (2 marks)
4.	a) Define "enthalpy of solution".	(2 marks)
	b) Calculate the enthalpy change (in joules) when 400g of water at 25°C is heated up to 100°C. (Specific heat capacity of water is 4.2 J/g°C).	(2 marks)
5.	An electric current of 3.0 amperes is passed through a solution of Copper sulphate (CuSO ₄) for 280 minutes. <u>Equations:</u>	
	Anode: $4 \text{ OH}_{-(aq)} \longrightarrow 2 \text{ H}_2 \text{O}_{(l)} + \text{O}_{2(g)} + 4e$	*8
	Cathode: $Cu^{2+}_{(aq)} + 2e \longrightarrow Cu_{(s)}$ a) Calculate the mass (in g) of copper that is deposited.	(2 marks)
	b) Calculate the volume of O _{2(g)} liberated at the anode (at room temperature and pressure). (1 mole of a gas occupies 24 dm ³ at room temperature and pressure, 1 Faraday = 96500 C/mol, Atomic mass of Cu = 63.5)	(2 marks)
6.	This question deals with colligative properties of solutions (a) and (b): a) An aqueous solution of 1.10 g of a protein in 100 ml of a solution has	
a.	an osmotic pressure of 3.93 × 10 ⁻³ atmosphere at 25°C (298K). Calculate the molar mass of the protein.(R = 0.08203 L. atm.mol ⁻¹ .K ⁻¹) b) A solution of 2.95 g of sulphur (molecules) in 100 g cyclohexane has a	(3 marks)
	freezing point of 4.18°C. Pure cyclohexane has a freezing point of 6.5°C.	(3 mark)
	i. Calculate the molecular mass of sulphur.ii. Calculate the molecular formula of sulphur.	
1	(Atomic mass of sulphur=32, Kf = 20.2°C Kg mol ⁻¹).	(2 marks)
7.	a) Draw 4 different structural isomers (that are non cyclic) of a compound	
	that is represented by the molecular formula of C ₄ H ₈ O ₂ .	(4 marks)
	b) Complete and balance the following chemical equation: Cl ₂ + NaOH _(hot, concentrated)	(2 marks)

					8		
8.	Ammonia is	oroduced b	y Haber-B	osch process according	to the following		
	Ammonia is produced by Haber-Bosch process according to the following equation: $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$, $\Delta H=-92KJmol^{-1}$						
				open to the position of e			
(a) Pressure	is decreas	ed. b) Ten	nperature is decreased.	Administration in	(4 marks)	
·\$.				of each chemical equation	n.		
				► CH ₂ Br- CH ₂ Br		(2 marks)	
						(2 marks)	
10.	b) CH ₃ CH ₂ Cl + OH ⁻ → CH ₂ =CH ₂ + H ₂ O +Cl- An organic compound A is constituted of C, H and O.						
				ass is as follows:			
				(Atomic mass: C=12, I	J-1 ()-16)		
	a) Find the e				1-1, 0=10)	(2 marks)	
	b) Find the n	nolecular fo	ormula of	compound A if its molec	1 :- 70	(2 marks)	
11.	By using ann	ronriste ea	uations il	lustrate how propan-1-o	ular mass is 72.	•	
11.	converted (by	using one	stop root	iusuale now propan-1-0	of can be		
	the following	dania dile	siep react	ion equation or more th	an one step) into		
				g reactants and condition	ons required.	(4 marks)	
12.	a) Write 2 cha			tane (butyl amine).			
12.				not generally considered	1 4 - 1	(1 mark)	
				er of Zinc=30)	to be a	(1 mark)	
				on metals are coloured.		(2 marks)	
13	a) Write a cher	mical equa	tion for ea	uations) to describe how	· · · · · · · · · · · · · · · · · · ·	(=	
10.	act as: i.	An acid;	ii. A base		7 zinc ions (Zn^{2+})	(O mornion)	
		•		tion for the reaction bet		(2 marks)	
	i Hot Con	centrated s	ulnhurie s	acid (H_2SO_4) and Carbor	ween:	(2 marks)	
				(HNO_3) and Sulphur (S)		(2 marks)	
14.	Aluminium is	obtained o	nn a large s	scale by electrolysis.	•		
	a) Draw a lab	elled diagra	m for indi	ustrial production of Alu	ıminiy	(2 marks)	
	b) Write chem	ical equati	ons that re	epresent the reactions w	thich tales along	(2 marks)	
	on the cathod	e and on th	ne anode d	uring this electrolysis.	men take place	(2 marks)	
15.	Draw the shar	pes of the f	ollowing m	nolecules and give the na	ame of each		
	shape. a) NH:			H ₂ O	anie of each	(3 marks)	
		,	,	_		(o marks)	
	SECTION B:		-		•		
16.	Using appropr	iate equation	ons of reac	tion by showing clearly	the reagents,		
	conditions and	d using str	uctural for	mulae of the organic co	mpounds,	8	
	a) Phenol to 4	Mitrobenza	ng compou	nds can be synthesized			
1 /7				b) Nitro Benzene to 2-		(10 marks)	
17.	a) The pka of	ot phospho	ric acid (F	H_3PO_4) is 2.1. Given a	0.1M solution of		
	n3rO4 and	i you are	required i	to obtain a buffer solu	tion of pH=2 by		
	salt (NaHol	PO ₄)? (Aton	ai ic mass: I	That should be the con	centration of the	(3 marks)	
	salt (NaH ₂ PO ₄)? (Atomic mass: H=1, O=16, Na=23, P=31). b) The table below shows the rates of reaction between substance A and B						
	at different concentrations.						
	Experiment	[A]	[B]	Initial rate of reaction			
		moldm-3	moldm-3	in moldm-3s-1	. ~		
	1.	0.50	0.50	2.0 ×10-2	285		
	2.	1.00	0.50	8.0 ×10-2	,		
	3.	1.00	1.00	16.0 ×10-2	***		
					5/		

					-	
	i. Determine the overall order of reaction.ii. Calculate the rate constant indicating clearly its units.c) Suggest 2 processes used to obtain hydrogen gas on a large scale from					
4	•	sses used to	obtain hydrogei	n gas on a large scale irolii	(2 marks)	
1	water.	The second second	17 11231 13 1 3 28	A LAND TO THE WAY TO SEE THE SECOND OF THE S		
18.	a) The molecular formula of alanine amino acid is CH ₃ CHNH ₂ COOH. i. Why does alanine amino acid present optical stereoisomerism?					
	ii. Draw the 2 str	uctures of ala	nine that repre	sent its optical		
	stereoisomers.			-	(2 marks)	
	b) i. Draw the 2 str	uctures of 1, 2	2-dichloroethen	e that represent its	(O	
	geometrical ste	ereoisomerism	l.		(2 marks)	
	ii. Write the stru synthesize nat			er which is used to	(1 mark)	
	iii. State 2 requi	rements for in	nproving the ph	ysical properties of rubber	•	
	when tyres a	re manufactu	red.		(2 marks)	
	iv. State 2 mono	mers (or draw	the structural	formulae of the monomers)	(2 marks)	
	that are used	d to make poly	yester (terylene)	·	(2 marks)	
19.	a) i. Define HESS'1	aw.			(2 marks) (3 marks)	
	ii. Calculate the enthalpy of reaction (X)					
	$CO_{(g)} + 2H_{2(g)} + \frac{3}{2}O_{(g)}$	2(g) CO ₂	$_{2(g)}$ +2 $_{2}O_{(l)}$; ΔH	$I_1^{\circ} = -204.2$ Kcal		
	$CH_3OH_{(1)} + \frac{3}{2}O_{2(g)}$	→CO ₂	$_{(g)}$ + 2H ₂ O _(l) ; Δ H	$I_2^0 = -182.5 \text{ Kcal}$		
	$CO_{(g)} + 2H_{2(g)}$ -		$\Theta_{\rm SOH_{(l)}}$; $\Delta_{\rm H_3O} = \Sigma_{\rm SOH_{(l)}}$			
	(4)					
	b) According to the			to the reaction:		
	[I·]	[BrO ³⁻] (mol/dm ³)	[H+] (mol/dm³)	Rate (moldm-3s-1)		
	(mol/dm ³)	0.10	0.10	3.0 × 10-4		
	0.10	0.18	0.10	7.56 × 10-4		
	0.14	0.18	0.10	5040 × 10 ⁻⁴	*	
	0.31	0.18	0.20	1.67 × 10 ⁻³		
	Equation		1			
$\overline{\text{BrO}_{3^-}}_{(aq)} + 9 \text{ I-}_{(aq)} + 6 \text{ H}^+ \longrightarrow 3 \text{I}_{3^-(aq)} + \text{Br-}_{(aq)} + 3 \text{H}_2 \text{O}_{(1)}$						
i. Find the order of reaction with respect to:						

ii. Find the overall order of reaction.	
iii. Find the rate constant K for the reaction.	
a) Write the structural formula of the following molecules:	

20.

i. 3-Ethyl 2, 4-dimethyl pentane. ii. 3, 4-Dimethyl pentan-2-ol.

I-, BrO₃- and H+

b) Write a chemical equation for the cracking n-octane (CH₃CH₂CH₂CH₂CH₂CH₂CH₃).

c) Explain the following observations (use chemical equations to clarify your answer):

i. Zinc hydroxide precipitate, Zn(OH)2, disappears (becomes soluble) when a solution of ammonia, NH3, is added to it.

ii. Calcium phosphate, Ca₃(PO4)₂ is sparingly soluble in water but it dissolves in a solution of Nitric acid (HNO3).

(3 marks) (1 mark) (1 mark)

(2 marks)

(2 marks)

(2 marks)

(2 marks)

(2 marks)